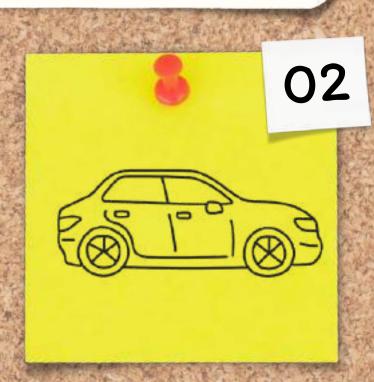
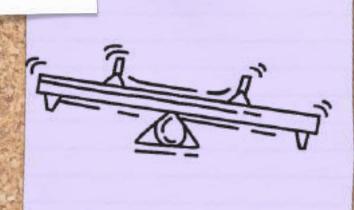


'O' Levels PHYSICS

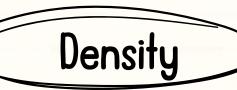
Dynamics


 $force_{net}(N) = mass(kg) \times acceleration(ms^{-2})$


 $weight(N) = mass(kg) \times g(gravitational field strength)$

 $speed (ms^{-1}) = \frac{distance (m)}{time (s)}$

 $acceleration (ms^{-2}) = \frac{change in velocity (ms^{-1})}{change in velocity (ms^{-1})}$ change in time (s)



Moment

 $moment(Nm) = force(N) \times perpendicular distance to pivot(m)$

density (
$$\rho$$
) = $\frac{mass(kg)}{volume(m^3)}$

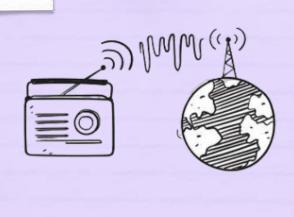
05

Pressure

$$pressure(Pa) = \frac{force(N)}{area(m^2)}$$

pressure $(Pa) = h(m) \times \rho (density) \times g$ (gravitational field strength)

$$work done (J) = force (N) \times distance (m)$$


$$power (W) = \frac{work done (J)}{time (s)}$$

kinetic energy (f) =
$$\frac{1}{2}$$
 × mass (kg) × velocity² (ms⁻¹)

gravitational potential energy (f) = mass (kg) \times g \times height (m)

07



 $velocity (ms^{-1}) = frequency (Hz) \times \lambda (wavelength m)$

$$frequency(Hz) = \frac{1}{T(period)}$$

period = time taken for one wave

 $refractive\ index\ (n) = \frac{\sin i\ (angle\ of\ incidence)}{\sin r\ (angle\ of\ refraction)}$

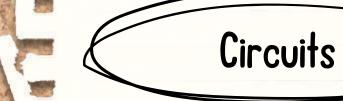

 $refractive\ index\ (n) = \frac{speed\ of\ light\ in\ vacuum}{speed\ of\ light\ in\ medium}$

 $refractive\ index\ (n) = \frac{1}{\sin C\ (critical\ angle)}$

Q (charge C)

Electricity

E = energy (J)


P = power (W)

T = time(s)

I = current (a)

V = voltage (V)

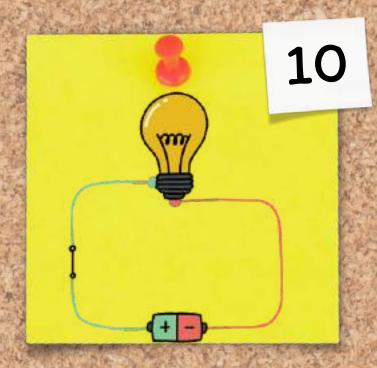
R = resistance (ohms)

ON

Series Circuit

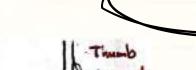
 $\mathbf{I} = \mathbf{I}_1 = \mathbf{I}_2 = \mathbf{I}_3$

 $V = V_1 + V_2 + V_3$


 $R_T = R_1 + R_2 + R_3$

Parallel Circuit

 $V = V_1 = V_2 = V_3$


 $\mathbf{I} = \mathbf{I}_1 + \mathbf{I}_2 + \mathbf{I}_3$


 $\frac{1}{R_{_{T}}} = \frac{1}{R_{_{1}}} + \frac{1}{R_{_{2}}} + \frac{1}{R_{_{3}}}$

I(a) =

Right Hand Grip Rule

Flemings

Left Hand Rule

Right Hand Rule