Algebra:

- $a(b+c)=a b+a c$
- $\quad(a+b)^{2}=a^{2}+2 a b+b^{2}$
- $\quad(a-b)^{2}=a^{2}-2 a b+b^{2}$
- $a^{2}+b^{2}=(a+b)^{2}-2 a b$
- $a^{2}-b^{2}=(a+b)(a-b)$

Quadratic Equations: $a x^{2}+b x+c=0$
Solve by formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Complete the square:

Make sure $\mathrm{a}=1$
$a x^{2}+b x+\left(\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c=0$

Indices:

- $a^{m} \times a^{n}=a^{m+n}$
- $a^{m} \div a^{n}=a^{m-n}$
- $\quad\left(a^{m}\right)^{n}=a^{m n}$
- $a^{0}=1$
- $a^{-n}=\frac{1}{a^{n}}$
- $\quad(a \times b)^{m}=a^{m} \times b^{m}$
- $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$
- $(\sqrt[n]{a})^{m}=a^{\frac{m}{n}}$
- $\sqrt{a} \times \sqrt{b}=\sqrt{a \times b}$
- $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
- $(\sqrt{a})^{2}=a$

Variation:

y is proportional to $x: y=k x$
y is inversely proportional to $x: y=\frac{k}{x}$
Simple Interest - To find interest: $i=\frac{P R T}{100}$
Compound Interest: $A=P\left(1+\frac{r}{100}\right)^{n}$
Conversion of units:
$\mathrm{km} / \mathrm{hr} \times \frac{5}{18}=\mathrm{m} / \mathrm{sec} ; \mathrm{m} / \mathrm{sec} \times \frac{18}{5}=\mathrm{km} / \mathrm{hr}$
Pythagoras Theorem: $c^{2}=a^{2}+b^{2}$
Trigonometry:
TOA CAH SOH

$\operatorname{Tan} \theta=\frac{\text { Opposite }}{\text { Adjacent }}=\frac{O}{A}$
$\operatorname{Cos} \theta=\frac{\text { Adjacent }}{\text { Hypothenuse }}=\frac{A}{H}$

$\operatorname{Sin} \theta=\frac{\text { Opposite }}{\text { Hypothenuse }}=\frac{O}{H}$

Sine Rule:
Cosine Rule:
Length of a side: $a^{2}=\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ Find an angle when all $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$

Co-ordinate Geometry:

Eqn. of a straight line: $y=m x+c$
Gradient of a straight line: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Midpoint: $M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Distance between two points:

$$
A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Matrices:

Addition

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right)=\left(\begin{array}{ll}
a+p & b+q \\
c+r & d+s
\end{array}\right)
$$

Subtraction

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)-\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right)=\left(\begin{array}{ll}
a-p & b-q \\
c-r & d-s
\end{array}\right)
$$

Multiplication

$$
\left.\begin{array}{rl}
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & \times\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right) \\
k \times\left(\begin{array}{ll}
a p+b r & a q+b s \\
c p+d r & c q+d s
\end{array}\right) \\
c & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
k a & k b \\
k c & k d
\end{array}\right), ~ l
$$

Vectors:

Triangular law of addition:
$\overrightarrow{O A}+\overrightarrow{A C}=\overrightarrow{O C}$
Parallelogram law of addition:
$\overrightarrow{O B}+\overrightarrow{O A}=\overrightarrow{O C}$

Polygons:

Sum of Exterior angles $=360^{\circ}$
One Exterior angle $=\frac{360^{\circ}}{n}$
Sum of interior angles $=(n-2) \times 180^{\circ}$
Types of polygons:

No. of sides	
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon
8	Octagon
9	Nonagon
10	decagon

Angle Properties of Triangle:

Sum of all angles $=180^{\circ}$
Exterior angle (x) = Sum of opposite interior angles $(a+b)$

Properties of Circles:

Angle at
centre ($2 p$) is
twice angle at circumference
(p)

Angle in the same segment of a circle are equal

Angle in a semicircle is a right angle.

Opposite angles of a quadrilateral add up

to 180°

$\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$
$\angle B+\angle D=180^{\circ}$

Exterior angle of a quadrilateral equals to interior opposite angle ($\angle \mathrm{b}=\angle \mathrm{p}$)

Chord of a Circle:

A line joining two points on a circle is called a chord (Line AB).

Tangent to a Circle:

Angle between tangent and radius drawn to contact $\angle A B O$ or $\angle O B C=90^{\circ}$

Any point outside of a circle, two tangents drawn to the circle = equal length $(T A=T B)$

Alternate Segment Theorem:

$\angle \mathrm{QAB}=\angle \mathrm{ACB}(\mathrm{p}=\mathrm{q})$

Similar Plane Figures

- Figures are similar only if their corresponding sides are proportional
- their corresponding angles are equal

$\frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}=k$

$\underline{\text { Area of } \mathrm{ABC}}=k^{2}$ Area of DEF

k is the scale factor

Similar Solid Figures

Solids are similar if their corresponding linear dimensions are proportional.

$\frac{r_{1}}{r_{2}}=\frac{h_{1}}{h_{2}}=k \rightarrow \mathrm{k}$ is the scale factor $\frac{\text { surface area of } \mathrm{A}}{\text { surface area of } \mathrm{B}}=k^{2}$
$\frac{\text { volume of } \mathrm{A}}{\text { volume of } \mathrm{B}}=k^{3}$
r is the radius, h is the height

Congruent Figures

Congruent figures are exactly the same size and shape.

2 triangles are congruent if they satisfy any of the following:
a. SSS property: All 3 sides of one triangle are equal to the corresponding sides of the other triangle.

b. SAS property: 2 given sides and a given angle of one triangle are equal to the corresponding sides and angle of the other triangle.

c. AAS property: 2 given angles and a given side of one triangle are equal to the corresponding angles and side of the other triangle.

d. RHS property: The hypothenuse and a given side of a right-angled triangle are equal to the hypothenuse and the corresponding side of the other right-angled triangle.

Graphs of functions

Positive

$$
y=m x+c
$$

$\boldsymbol{y}=a x^{2}+b x+c \quad y=-a x^{2}+b x+c$

$y=a x^{3}$

$y=a x^{-1}$

$y=a x^{-2}$

Graphs from complete the square
$\boldsymbol{y}=(x+a)^{2}+\boldsymbol{h} \quad \boldsymbol{y}=-(x+a)^{2}+\boldsymbol{h}$

\min point $(-a, h)$
maxpoint $(-a, h)$

Area \& Perimeter:

Figure	Area	Perimeter/ Circumference
Rectangle \square b l	$l \times b$	$2(l+b)$
Square	$a \times a$	$4 \times a$
Parallelogram	$b \times h$	$2(a+b)$
Triangle	$\begin{gathered} \frac{1}{2} \times b \times h \\ \text { Or } \\ \frac{1}{2} a b \sin C \end{gathered}$	$a+b+c$
Trapezium	$\frac{1}{2}(a+b) h$	Sum of all sides
Circle	πr^{2}	$2 \pi r$
Semicircle	$\frac{1}{2} \pi r^{2}$	$\frac{1}{2} \pi d+d$
Sector	$\pi r^{2} \times \frac{\theta}{360}$	Length of an arc = $2 \pi r \times \frac{\theta}{360}$

Surface Area \& Volume:

Figure	Surface area	Volume
Cylinder	Curved surface area $=2 \pi r h$ Total surface area $=2 \pi r(h+r)$	$\pi r^{2} h$
Cone	Curved surface area $=\pi r l$ Where $l=\sqrt{\left(r^{2}+h^{2}\right)}$ Total surface area $=\pi r(l+r)$	$\frac{1}{3} \pi r^{2}$
Sphere	$4 \pi r^{2}$	$\frac{4}{3} \pi r^{3}$
Pyramid	Base area + Area of shapes in the sides	$\frac{1}{3} \times$ base area \times perpendicular height
Cubiod	$2(l b+b h+l h)$	$l \times b \times h$
Cube ℓ	$6 l^{2}$	l^{3}
Hemisphere	$2 \pi r^{2}$	$\frac{2}{3} \pi r^{3}$

Sets:

Subset \subseteq

$B \subseteq A$ means every elements of set B is also an element of set A .

or

Union U

$A \cup B$ is the set of elements in either A, B or both A and B .

Intersection \cap

$A \cap B$ is the set of elements which are in A and also in B

Disioint sets

Disjoint set do not have any element in common. If A and B are disjoint sets, then $A \cap B=\emptyset$

Proper subset C
$B \subset A$ means every element of B is an element of set A but $B \neq A$.

Complement

The complement of A, written as A^{\prime} refers to the elements in ε but not in A .

Statistics:

Mean $=\frac{\sum f x}{\sum f}=$ average
Mode of a series of number = number which occurs most frequently
Median = arrange series of numbers in ascending order and then choosing the number in the middle.

Probability:

Prob. Of an event $=\frac{\text { no.of favourable outcomes }}{\text { total no.of equally likely outcome }}$
Exclusive event (events cannot occur at the same time)
For exclusive event $A \& B: p(A$ or $B)=p(A)+p(B)$
Independent event (events can occur at the same time)
For independent event $A \& B: p(A$ and $B)=p(A) \times p(B)$
www.acescorers.com.sg Instagram @chernteng

